This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

Preparation and characterization of clusters containing the MNiRuS (M = Mo or W) core

Zhi-Guo Bian^a; Bao-Hua Zhu^a; Qing-Shan Li^b; Yuan-Qi Yin^a ^a State Key Laboratory for Oxo Synthesis and Selective Oxid

^a State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China ^b Research Institute of Element-Organic Chemistry, Nankai University, Tianjin, China

To cite this Article Bian, Zhi-Guo , Zhu, Bao-Hua , Li, Qing-Shan and Yin, Yuan-Qi(2004) 'Preparation and characterization of clusters containing the MNiRuS (M = Mo or W) core', Journal of Coordination Chemistry, 57: 4, 295 -301

To link to this Article: DOI: 10.1080/00958970410001671066 URL: http://dx.doi.org/10.1080/00958970410001671066

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

J. Coord. Chem., Vol. 57, No. 4, 10 March 2004, pp. 295-301

PREPARATION AND CHARACTERIZATION OF CLUSTERS CONTAINING THE MNiRuS (M = Mo OR W) CORE

ZHI-GUO BIAN^a, BAO-HUA ZHU^a, QING-SHAN LI^b and YUAN-QI YIN^{a,*}

 ^aState Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
 ^bResearch Institute of Element-Organic Chemistry, Nankai University, Tianjin, 300071, China

(Received 7 April 2003; Revised 1 August 2003; In final form 26 January 2004)

Three chiral derivatives $(\mu_3$ -S)NiRuM(CO)₅ $(\eta^5$ -C₅H₃)[η^5 -C₅H₄C(O)H] (1, M=Mo; 2, M=W) and { $(\mu_3$ -S)RuNiMo(CO)₅ $(\eta^5$ -C₅H₃)[η^5 -C₅H₄C(O)]}₂-1,4-C₆H₄ (3) were synthesized by the thermal reactions of $(\mu_3$ -S)CoRuM(CO)₈[η^5 -C₅H₄C(O)H] (M=Mo; W), { $(\mu_3$ -S)RuCoMo(CO)₈[η^5 -C₅H₄C(O)]}₂-1,4-C₆H₄ with NiCp₂ in THF at reflux. Further reactions of clusters 1 and 2 with 2,4-dinitrophenylhydrazine catalyzed by 98% H₂SO₄ gave two novel clusters 4 and 5. The results show that the metal fragment Co(CO)₃ in $(\mu_3$ -S)CoRuM(CO)₈[η^5 -C₅H₄C(O)H] could be exchanged by NiCp. These complexes were characterized by elemental analysis, IR and ¹H NMR spectra. The molecular structure of compound 1 was determined by single-crystal X-ray diffraction. The crystals of cluster 1 are triclinic with space group P1, *a*=7.641(3), *b*=8.819(4), *c*=15.097(7)Å, empirical formula C₁₆H₁₀MoNiO₆RuS, M_r =586.02 g mol⁻¹, *Z*=2, D_c = 2.123 g cm⁻³, μ =2.646 mm⁻¹, final *R*=0.0275, R_w =0.0693.

Keywords: Synthesis; Metal exchange; Chiral cluster; Crystal structure

INTRODUCTION

In recent years routes to hetero-metal transition metal clusters have advanced from the age of serendipity into the era of logical, controlled syntheses with some degree of mechanistic understanding [1–4]. A large number of hetero-metal clusters have been synthesized; furthermore, the chemistry of chiral tetrahedral hetero-metal clusters is of growing interest [5]. A motivation for preparing skeleton chiral clusters was to provide unambiguous evidence for cluster catalysis through asymmetric induction [6]. The pioneering work of Vahrenkamp, provided proof of the concept [7].

In our research group considerable efforts have been directed to the synthesis of chiral tetrahedral clusters containing four different atoms or groups at the vertices of the tetrahedron. Recently we have described the synthesis and structure of some

^{*}Corresponding author. E-mail: hcom@ns.lzb.ac.cn

chiral clusters containing the core MoRuCoS [5f,8]. In this article we report novel chiral clusters containing the SRuNiMo core.

EXPERIMENTAL

General Procedure and Material

All reactions were carried out under nitrogen of high purity using standard Schlenk vacuum techniques. All solvents were dried according to standard procedure before use. Chromatographic separations and purifications were performed on 160–200 mesh silica gel. $(\mu_3$ -S)CoRuM(CO)₈[η^5 -C₅H₄C(O)H] (M = Mo, W) [5f] and NiCp₂ [9] were prepared according to published methods.

IR spectra were recorded on a Nicolet FT-IR 10 DX spectrophotometer, and ¹H NMR spectra on a Bruker-AM 400 MHz spectrometer; C/H determinations were performed using a Carlo-Erba 1160 instrument.

General Procedure for Preparing Complexes 1, 2 and 3

The cluster $(\mu_3$ -S)CoRuMo(CO)₈[η^5 -C₅H₄C(O)H] (100 mg, 0.17 mmol) and NiCp₂ (50 mg, 0.26 mmol) were dissolved in THF (25 cm³). The mixture was refluxed for 12 h, the solvent was removed under reduced pressure and the residue was extracted with CH₂Cl₂ (5 cm³). Then the extracts were subjected to column chromatographic separation using 1:2 CH₂Cl₂/petroleum ether as eluent. Several small bands with one major one were developed. From the main black band 70 mg (72.2%) of $(\mu_3$ -S)NiRuMo(CO)₅(η^5 -C₅H₅)[η^5 -C₅H₄C(O)H] (1) was obtained as a black solid. Anal. Calcd. for C₁₆H₁₀O₆MoNiRuS(%): C, 32.79; H, 1.72. Found: C, 32.86; H, 1.78. IR (ν CO): 2056vs, 1979vs, 1924s, 1822s, (C=O) 1681 cm⁻¹. ¹H NMR (CDCl₃): δ 9.61 (s, 1H, COH), 6.05–5.62 (m, 4H, C₅H₄), 5.38 (s, 5H, C₅H₅).

2: Yield 26.3%. Anal. Calcd. for $C_{16}H_{10}O_6WNiRuS(\%)$: C, 28.51; H, 1.50. Found: C, 28.48; H, 1.52. IR (KBr): (ν CO) 2054vs, 1977vs, 1923s, 1815s, (C=O) 1678s cm⁻¹. ¹H NMR (CDCl₃): δ 9.61 (s, 1H, COH), 6.02–5.69 (m, 4H, C₅H₄), 5.44 (s, 5H, C₅H₅).

3: Yield 34.8%. Anal. Calcd. for $C_{38}H_{22}O_{12}Mo_2Ni_2Ru_2S_2(\%)$: C, 36.62; H, 1.78. Found: C, 36.74; H, 1.72. IR (KBr): IR (ν CO) 2083w, 2058vs, 1977vs, 1934w, 1890s, (C=O) 1646m cm⁻¹. ¹H NMR (CDCl₃): δ 7.87 (s, 4H, C₆H₄), 6.13–5.62 (q, 8H, 2C₅H₄), 5.32 (s, 10H, 2C₅H₅).

General Procedure for Preparing Complexes 4 and 5

2,4-Dinitrophenylhydrazine solution (1.0 cm^3) , prepared by dissolving 2,4-dinitrophenylhydrazine (500 mg) in 98% H₂SO₄ (2.5 cm³), H₂O (5 cm³) and ethanol (17.5 cm³), was added to an ethanol solution (15 cm³) in which cluster **1** (30 mg, 0.05 mmol) was dissolved. The mixture was treated at room temperature for 1 h, the solvent was removed under reduced pressure and the residue was extracted with CH₂Cl₂ (5 cm³). Then the extracts were subjected to silica-gel column chromatography using 1:1 CH₂Cl₂/petroleum ether as eluent. Several small bands with a major brown one were developed. From the main brown band was obtained 25 mg, (65.8%) of cluster **4** as a

brown solid. Anal. Calcd. for $C_{22}H_{14}O_9N_4MoNiRuS(\%)$: C, 34.49; H, 1.84; N, 7.31. Found: C, 34.54; H, 1.88; N, 7.25. IR (KBr): 2058vs, 1972vs, 1981vs, 1850m, 1614s (C=N) and 1584s (NO₂) cm⁻¹. ¹H NMR (CDCl₃): δ 11.24 (s, 1H, N–H), 9.15 (s, 1H, H³ of benzene ring), 8.38–8.36 (d, 1H, H⁵ of benzene ring, J=8.24 Hz), 7.96–7.93 (d, 1H, H⁶ of benzene ring, J=9.36), 7.81 (s, 1H, H–C=N), 6.02–5.58 (q, 4H, C₅H₄), 5.36 (s, 5H, C₅H₅).

5: Yield 81.4%. Anal. Calcd. for $C_{22}H_{14}O_9N_4WNiRuS(\%)$: C, 30.94; H, 1.65; N, 6.56. Found: C, 30.88; H, 1.68; N, 6.60. IR (KBr): 2056vs, 1985vs, 1968m, 1939m, 1846m, 1615s (C=N) and 1586m (NO₂) cm⁻¹. ¹H NMR (CDCl₃): δ 11.27 (s, 1H, N–H), 9.15 (s, 1H, H³ of benzene ring), 8.37 (d, 1H, H⁵ of benzene ring), 7.95–7.92 (d, 1H, H⁶ of benzene ring), 7.80 (s, 1H, H–C=N), 6.03–5.63 (q, 4H, C₅H₄), 5.43 (s, 5H, C₅H₅).

X-ray Crystallography of Cluster 1

The black crystals used for X-ray determination were obtained from a hexane/CH₂Cl₂ solution at -20° C. Preliminary examination and data collection were performed with Mo K α ($\lambda = 0.71073$ Å) radiation on a CCD area detector equipped with a graphite monochromator. Data were collected by the ω/ϕ scan technique. The structures were solved by the direct method using the SHELXS-97 program and refined by the full-matrix least-squares method on F^2 using the SHELXS-97 program [10]. The non-hydrogen atoms were refined anisotropically. Hydrogen positions were calculated by geometrical methods. Crystal data and experimental details are collected in Table I.

Cluster	1
Empirical formula	C ₁₆ H ₁₀ MoNiO ₆ RuS
Formula weight	586.02
Temperature (K)	293(2)
Wavelength (Å)	0.71073
Crystal system	Triclinic
Space group	$P\bar{1}$
a (Å)	7.641(3)
b (Å)	8.819(4)
c (Å)	15.097(7)
α (°)	97.706(7)
β (°)	93.969(6)
γ (°)	113.401(6)
Volume ($Å^3$)	916.8(7)
Z	2
Calculated density (Mg/m ³)	2.123
Absorption coefficient (mm^{-1})	2.646
F(000)	568
θ range for data collection (°)	2.56 to 25.02
Limiting indices	$-9 \le h \le 9, -10 \le k \le 5, -17 \le l \le 17$
Reflections collected	3830
Independent reflections	$3216 (R_{int} = 0.0156)$
Completeness to θ (°)	$99.4\% (\theta = 25.02)$
Data/restraints/parameters	3216/0/235
Goodness-of-fit on F^2	1.050
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0275, wR2 = 0.0693
Largest diff. Peak and hole $(e \text{ Å}^{-3})$	0.913 and -0.466

 TABLE I
 Crystallographic data and structure refinement for Cluster 1

RESULTS AND DISCUSSION

Preparation

The reactions described in this work are summarized in Scheme 1. When NiCp₂ was treated with $(\mu_3$ -S)CoRuM(CO)₈[η^5 -C₅H₄C(O)H] (M = Mo, W) and { $(\mu_3$ -S)RuCoMo-(CO)₈[η^5 -C₅H₄C(O)]}₂-1,4-C₆H₄ in THF refluxing for 10–15 h, the expected Clusters 1–3 were obtained in yields of 26–72%. Further reactions of 1 and 2 with 2,4-dinitrophenylhydrazine in ethanol at room temperature catalyzed by 98% H₂SO₄ gave two novel clusters, 4 and 5, in yields of 65–82%.

It is well known that the d⁹ ML₃ metal fragment Co(CO)₃ can be displaced by isolobal fragments Cp*(CO)₂M (Cp* = Cp or functionally substituted Cp; M = Mo, W) and NiCp in isolobal displacement reactions [5,11]. However, no products derived from isolobal displacement of the fragment Cp(CO)₂M by η^5 -C₅H₅Ni were found under such conditions. This result suggests that the isolobal fragment Co(CO)₃ is a much better leaving group than η^5 -C₅H₄M(CO)₂ in such reaction conditions.

Characterization

These clusters are air-stable black or brown solids. The elemental analyses, IR and ¹H NMR spectra are consistent with their expected structures. In the IR spectra, all showed terminal carbonyl absorption bands in the range 2090–1920 cm⁻¹ and bridging or semi-bridging carbonyl bands between 1900 and 1800 cm^{-1} . The IR spectra of 1–3 showed a ketone carbonyl absorption band between 1640 and 1681 cm⁻¹, and those of 4 and 5 showed an absorption band around 1614 cm^{-1} for C=N stretching. The absorption bands around 1585 cm^{-1} in the spectra of 4 and 5 are characteristic for nitro groups bound to the benzene ring.

SCHEME 1.

THE MNiRuS CORE

The ¹H NMR spectra of all clusters showed the presence of hydrogen atoms in their corresponding organic group. For the substituted cyclopentadienyl, the ¹H NMR spectra of all clusters exhibit two doublets in the range δ 6.13–5.58, with the upfield doublet assigned to the two protons at the 3,4-positions of the substituted cyclopentadienyl rings and the other assigned to the 2,5-protons, resulting from the different deshielding effects of the electron-withdrawing groups C=O and C=N on these nuclei. In ¹H NMR spectra of 1 and 2, the singlet at δ 9.61 arises from the proton resonance of CHO. The ¹H NMR spectrum of 3 shows a singlet at δ 7.87 assigned to the protons in the C₆H₄ unit. For the hydrazone cluster complexes 4 and 5, the singlet around δ 7.81 was assigned to the proton in the N=CH unit, and a quartet in the range δ 9.15–7.92 was assigned to the proton signal of the N–NH unit, which is in agreement with the literature value [12].

X-ray Crystal Structure Analysis

The final atomic coordinates and thermal parameters of the non-hydrogen atoms for Cluster 1 are given in Table II. Selected bond lengths and angles are listed in Table III. The molecular structure of Cluster 1 is presented in Fig. 1. As can be seen from Fig. 1, the structure of Cluster 1 contains a slightly distorted tetrahedral core NiMoRuS, which carries two carbonyl groups on Mo, three carbonyl groups on Ru, one cyclopentadienyl ligand attached to the Ni atom, and one substituted cyclopentadienyl ligand coordinated to the Mo atom. The bond lengths and angles involving the cluster core

Atom	X	у	X	U(eq)
Mo(1)	2246(1)	7541(1)	8273(1)	36(1)
Ni(1)	3022(1)	6814(1)	6616(1)	37(1)
Ru(1)	2187(1)	9369(1)	6851(1)	40(1)
S(1)	219(1)	6596(1)	6873(1)	38(1)
C(1)	4711(7)	11 206(6)	7021(3)	57(1)
O(1)	6205(6)	12219(5)	7084(3)	96(1)
C(2)	1788(7)	9239(6)	5585(3)	59(1)
O(2)	1556(7)	9128(6)	4825(2)	91(1)
C(3)	783(7)	10726(6)	7115(3)	53(1)
O(3)	-30(6)	11 535(5)	7262(3)	82(1)
C(4)	2432(7)	9829(6)	8641(3)	54(1)
O(4)	2556(7)	11 097(5)	9031(2)	82(1)
C(5)	5082(7)	8632(6)	8244(3)	50(1)
O(5)	6714(5)	9287(5)	8330(2)	72(1)
C(6)	-1744(9)	6536(9)	9184(4)	74(2)
O(6)	-3264(6)	5553(7)	8767(3)	98(2)
C(7)	30(6)	6284(6)	9200(3)	47(1)
C(8)	1824(8)	7305(7)	9761(3)	66(1)
C(9)	3148(7)	6625(7)	9552(3)	63(1)
C(10)	2230(7)	5215(6)	8887(3)	56(1)
C(11)	342(6)	4989(5)	8668(3)	46(1)
C(12)	3240(11)	4622(7)	6048(6)	90(2)
C(13)	4960(12)	5714(12)	6594(4)	94(2)
C(14)	5661(8)	7165(9)	6224(5)	87(2)
C(15)	4461(12)	6956(11)	5479(5)	90(2)
C(16)	2990(10)	5438(11)	5379(4)	90(2)

TABLE II Atomic coordinates and equivalent isotropic displacement parameters for Cluster 1

U(eq) is defined as one-third of the trace of the orthogonalized U_{ii} tensor.

Mo(1)-S(1)	2.3681(13)	Mo(1)-C(4)	1.965(5)
Mo(1)-Ni(1)	2.6645(12)	Mo(1)-C(5)	1.998(5)
Mo(1)-Ru(1)	2.8607(10)	C(4)–O(4)	1.156(5)
Ni(1)-S(1)	2.1407(14)	C(5)–O(5)	1.136(5)
Ni(1)-Ru(1)	2.5624(11)	C(6)–O(6)	1.204(7)
Ru(1)-S(1)	2.3134(14)	C(6)–C(7)	1.458(7)
C(10)-C(11)	1.385(6)	C(9)–C(10)	1.386(7)
C(12)-C(16)	1.360(10)	Ru(1)-C(2)	1.895(5)
C(12)–C(13)	1.402(10)	Ru(1)-C(3)	1.922(5)
Ni(1)-Ru(1)-Mo(1)	58.55(2)	S(1)-Mo(1)-Ni(1)	49.92(4)
Ni(1)-S(1)-Ru(1)	70.12(4)	S(1)-Mo(1)-Ru(1)	51.47(3)
Ni(1)-S(1)-Mo(1)	72.25(4)	Ni(1)-Mo(1)-Ru(1)	55.12(3)
Ru(1)-S(1)-Mo(1)	75.32(3)	S(1)-Ni(1)-Ru(1)	58.11(3)
S(1)-Ru(1)-Mo(1)	53.20(3)	S(1)-Ni(1)-Mo(1)	57.83(3)
S(1)-Ru(1)-Ni(1)	51.78(4)	Ru(1)-Ni(1)-Mo(1)	66.331(17)
C(4)-Mo(1)-C(5)	85.8(2)	C(4)-Mo(1)-Ru(1)	63.81(13)

TABLE III Selected bond distances (Å) and angles (°) for Cluster 1

FIGURE 1 Crystal structure of Cluster 1.

are very close to those in the analog [13]. The acute angles in the tetrahedral geometry of Cluster 1 about the basal atoms range from 49.92 to 58.55° and those about the sulfur atom average 72.56°, which deviates considerably from perfect tetrahedral geometry. Cluster 1 contains a total of 48 electrons and is electronically saturated. It should be pointed out that the carbonyl of C(4)–O(4) bound to the Mo atom is semi-bridging, owing to its asymmetric parameter $\alpha = (d_2 - d_1)/d_1 = 0.35$ [$d_2 = \text{Ru} \cdots \text{C}(4) = 2.6613$ Å, $d_1 = \text{Mo-C}(4) = 1.965$ Å] falling in the range of α values defined for semi-bridging carbonyls by Curtis [14].

Acknowledgments

We are grateful for the financial support of this work by the National Foundation of China and the Foundation of Chinese Academy of Sciences.

- [1] W.L. Gladfelter and G.L. Geoffroy, Adv. Organomet. Chem. 18, 207 (1980).
- [2] R. Hoffmann, Angew. Chem. Int. Ed. Engl. 21, 711 (1982).
- [3] T. Albiez, H. Bantel and H. Vahrenkamp, Chem. Ber. 123, 1805 (1990).
- [4] (a) F.G.A. Stone and M.L. Williomes, J. Chem. Soc., Dalton Trans. 2647 (1988); (b) R.C. Lin, Y. Chi, S.M. Peng and G.H. Li, Inorg. Chem. 31, 3818 (1992).
- [5] (a) H.P. Wu, Z.Y. Zhao, S.M. Liu, E.R. Ding and Y.Q. Yin, *Polyhedron* 15, 4117 (1996); (b) H.P. Wu, Y.Q. Yin, X.Y. Huang and K.B. Yu, *J. Organomet. Chem.* 498, 119 (1995); (c) H.P. Wu, Y.Q. Yin and Q.C. Yang, *Polyhedron* 15, 43 (1996); (d) E.R. Ding, S.L. Wu, C.G. Xia, Y.Q. Yin and J. Sun, *J. Organomet. Chem.* 568, 157 (1999); (e) E.R. Ding, S.M. Liu, Y.Q. Yin and J. Sun, *Polyhedron* 17, 3273 (1997); (f) E.R. Ding, S.L. Wu, C.G. Xia and Y.Q. Yin, *J. Organomet. Chem.* 568, 157 (1998); (g) H.P. Wu, Y.Q. Yin and Q.C. Yang, *Inorg. Chim. Acta* 245, 143 (1996); (h) Y.H. Zhang, S.L. Wu, Q.S. Li, Y.Q. Yin and X.Y. Huang, *J. Chem. Res.* (S) 550 (1999).
- [6] (a) C.U. Pittman, G.M. Richmond, M. Absihalabi, H. Beurich, F. Richter and H. Vahrenkamp, *Angew. Chem., Int. Ed. Engl.* 21, 786 (1982); (b) H. Vahrekamp, *J. Organomet. Chem.* 370, 65 (1989); (c) R.D. Adams and F.A. Cotton, Catalysis by Di- and Polynuclear Metal Cluster Complexes (Wiley-VCH, Weinheim, New York, 1998), p. 27; (d) D.T. Clark, K.A. Sutin and M.J. McGlinchey, *Organometallics* 8, 155 (1989).
- [7] H. Vahrenkamp, J. Organomet. Chem. 65, 372 (1989).
- [8] Y.H. Zhang, J.C. Yuan, Y.Q. Yin, Z.Y. Zhou and A.S.C. Chan, New J. Chem. 25, 939 (2001).
- [9] M.L. Jolly and D.J. Chazan, Inorg. Synth. 11, 22 (1968).
- [10] SHELXTL, Rev. 5.03 (Siemens Analytical X-ray: Madison, WI, 1994).
- [11] (a) H. Vahrenkamp, Comments Inorg. Chem. 4, 253 (1985); (b) D.N. Duffy, M.M. Kassis and A.D. Rae, J. Organomet. Chem. 460, 97 (1993); (c) C.A. Dickson and N.J. Coville, J. Organomet. Chem. 427, 335 (1992); (d) H.T. Schacht and H. Vahrenkamp, J. Organomet. Chem. 381, 261 (1990); (e) M. Mlekuz, P. Bougeard, M.J. McGlinchey and G. Jaouen, J. Organomet. Chem. 253, 117 (1983).
- [12] (a) L.C. Song, Y.B. Dong, Q.M. Hu, Y.K. Li and J. Sun, *Polyhedron* 17, 1579 (1998); (b) L.C. Song, Q.M. Hu, J.S. Yang and J.Y. Shen, *J. Chem. Res.* (S) 6, 344 (1998).
- [13] Z.G. Bian, Y.H. Zhang, B. Hu, W.Q. Zhang, B.H. Zhu, Y.Q Yin and J. Sun, J. Chem. Res. (S) 4, 194 (2002).
- [14] An asymmetric parameter α is defined as $\alpha = (d_2 d_1)/d_1$ where d_1 and d_2 are the short and long distances of M–C(O), respectively. If $0.1 \le \alpha \le 0.6$, the carbonyl is designated semi-bridging according to Curtis's suggestion. M.D. Curtis, K.R. Han and W.M. Butler, *Inorg. Chem.* **19**, 2096 (1980).